使用 Scikit-Learn 在 Python 中进行机器学习:初学者指南

2024-08-16 0 288

使用 Scikit-Learn 在 Python 中进行机器学习:初学者指南

您有兴趣使用 Python 学习机器学习吗? Scikit-Learn 库就是您的最佳选择!这个流行的 Python 库专为高效数据挖掘、分析和模型构建而设计。在本指南中,我们将向您介绍 Scikit-Learn 的基础知识以及如何开始将其用于机器学习项目。

什么是 Scikit-Learn?
Scikit-Learn 是一款功能强大且易于使用的数据挖掘和分析工具。它构建在 numpy、ScIPy 和 matplotlib 等其他流行库之上。它是开源的,并拥有商用 BSD 许可证,任何人都可以使用。

您可以使用 Scikit-Learn 做什么?
Scikit-Learn 广泛用于机器学习中的三个主要任务:

1.分类
分类涉及识别对象属于哪个类别。例如,预测电子邮件是否是垃圾邮件

2.回归
回归是根据相关自变量预测连续变量的过程。例如,使用过去的股票价格来预测未来的价格。

3.聚类
聚类涉及自动将相似的对象分组到不同的簇中。例如,根据购买模式对客户进行细分。

如何安装 Scikit-Learn?
如果您使用的是 windows 操作系统,这里有安装 Scikit-Learn 的分步指南:

  1. HTTPs://www.python.org/downloads/ 下载安装 Python。搜索cmd打开终端,输入python –version即可查看安装的版本。

  2. HTTPS://sourceforge.net/projects/numpy/files/NumPy/1.10.2/ 下载安装程序来安装 NumPy。

  3. 从 SciPy: Scientific Library for Python 下载 SciPy 安装程序 – 在 SourceForge.net 上浏览 /scipy/0.16.1。

    立即学习“Python免费学习笔记(深入)”;

  4. 通过在命令行终端中输入 python get_pip.py 来安装 pip

  5. 最后,通过在命令行中输入 pip install scikit-learn 来安装 scikit-learn。

什么是 Scikit 数据集?
Scikit 数据集是库提供的内置数据集,供用户练习和测试其模型。您可以在 https://scikit-learn.org/sTable/datasets/index.html 找到这些数据集的名称。在本指南中,我们将使用葡萄酒品质-红色数据集,该数据集也可以从 Kaggle 下载。

导入数据集和模块
要开始使用 Scikit-Learn,我们首先需要导入必要的模块和数据集。

导入 pandas 模块并使用 read_csv() 方法读取 .csv 文件并将其转换为 pandas dataFrame。

我们将使用的模块是:

  • NumPy 用于代数和数值计算
  • 用于处理数据框的 Pandas
  • model_selection 模块用于在不同模型之间进行选择
  • 用于缩放和转换数据的预处理模块
  • RandomForestRegressor 用于比较我们数据集的性能指标

训练集和测试集
将数据拆分为训练集和测试集对于评估模型的性能至关重要。训练集用于构建和测试我们的算法,而测试集用于评估我们预测的准确性。

为了分割数据,我们将使用 Scikit-Learn 提供的 train_test_split() 函数。

预处理数据
预处理数据是提高模型质量的初始也是最重要的步骤。它涉及使数据适合在机器学习模型中使用。

一种常见的预处理技术是标准化,它在应用机器学习模型之前标准化输入数据特征的范围。为此,我们可以使用 Scikit-Learn 提供的 Transformer API

了解超参数和交叉验证
超参数是更高级的概念,例如复杂性和学习率,无法直接从数据中学习,需要预先定义。

为了评估模型的泛化性能并避免过度拟合,交叉验证是一种重要的评估技术。这涉及到将数据集分成 N 个等体积的随机部分。

评估模型性能
训练和测试我们的模型后,是时候使用各种指标评估其性能了。为此,我们将导入我们需要的指标,例如 r2_score 和mean_squared_error。

r2_score 函数计算因变量对自变量的方差,而mean_squared_error 计算误差平方的平均值。必须牢记模型的目标以确定性能是否足够。

不要忘记保存您的模型以供将来使用!

总之,我们已经介绍了在 Python 中使用 Scikit-Learn 进行机器学习的基础知识。通过遵循本指南中概述的步骤,您可以开始探索 Scikit-Learn 并将其用于您自己的数据挖掘和分析项目。凭借其用户友好的界面和广泛的功能,Scikit-Learn 对于初学者和经验丰富的数据科学家来说都是一个强大的工具

使用 MyExamcloud 上提供的 Python 认证练习测试来提高您的 Python 编码能力。

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

免责声明
1. 本站所有资源来源于用户上传和网络等,如有侵权请邮件联系本站整改team@lcwl.fun!
2. 分享目的仅供大家学习和交流,您必须在下载后24小时内删除!
3. 不得使用于非法商业用途,不得违反国家法律。否则后果自负!
4. 本站提供的源码、模板、插件等等其他资源,都不包含技术服务请大家谅解!
5. 如有链接无法下载、失效或广告,请联系本站工作人员处理!
6. 本站资源售价或VIP只是赞助,收取费用仅维持本站的日常运营所需!
7. 如遇到加密压缩包,请使用WINRAR解压,如遇到无法解压的请联系管理员!
8. 因人力时间成本问题,部分源码未能详细测试(解密),不能分辨部分源码是病毒还是误报,所以没有进行任何修改,大家使用前请进行甄别!
9.本站所有源码资源都是经过本站工作人员人工亲测可搭建的,保证每个源码都可以正常搭建,但不保证源码内功能都完全可用,源码属于可复制的产品,无任何理由退款!

网站搭建学习网 Python 使用 Scikit-Learn 在 Python 中进行机器学习:初学者指南 https://www.xuezuoweb.com/13737.html

常见问题
  • 本站所有的源码都是经过平台人工部署搭建测试过可用的
查看详情
  • 购买源码资源时购买了带主机的套餐是指可以享受源码和所选套餐型号的主机两个产品,在本站套餐里开通主机可享优惠,最高免费使用主机
查看详情

相关文章

发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务

Fa快捷助手
手机编程软件开发

在手机上用手点一点就能轻松做软件

去做软件
链未云主机
免备案香港云主机

开通主机就送域名的免备案香港云主机

去使用
链未云服务器
免备案香港云服务器

支持售后、超低价、稳定的免备案香港云服务器

去使用